Lemke-Hobson Example

Monday, 29 August 2022 4:50 PM

Then $v_{0}=(0,0,0)$. Tight constraints: $x_{1}=0, x_{2}=0, x_{3}=0$
(1) Untighten $x_{3}=0$. Find $\left.\begin{array}{rl}2: & z_{1} \\ =0 \\ z_{2} & =0 \\ z_{3} & =1\end{array}\right\}(0,0,1)$

Then increasing $\lambda_{1} \quad x+\lambda_{2} \geqslant 0 \quad \forall \lambda \geqslant 0$

$$
R(x+\lambda 2)=\left[\begin{array}{l}
0 \\
3 \lambda \\
2 \lambda
\end{array}\right] \leqslant 1, \Rightarrow \lambda \leqslant \frac{1}{3}
$$

Thus, next vertex is $\left(0,0, \frac{1}{3}\right)$, fight constraints: $x_{1}=0, x_{2}=0,\left(R_{x}\right)_{2}=1$ Now coordinate 2 is represented twice, \& $x_{2}=0$ was tight earliv. So we untighter $x_{2}=0$.

Again, $x=\left(0,0, \frac{1}{3}\right)+\lambda 2$ is feasible for all $\lambda \geqslant 0$

$$
\begin{aligned}
& R\left(x+\lambda_{2}\right)=\left[\begin{array}{c}
0 \\
1 \\
2 / 3
\end{array}\right]+\left[\begin{array}{c}
3 \lambda \\
0 \\
2 \lambda
\end{array}\right] \leqslant 1 \\
& \Rightarrow\left[\begin{array}{c}
3 \lambda \\
0 \\
2 \lambda
\end{array}\right] \leqslant\left[\begin{array}{c}
1 \\
0 \\
1 / 3
\end{array}\right] \Rightarrow \lambda \leqslant \frac{1}{6}
\end{aligned}
$$

Thus next vertex is $(0,1 / 6,1 / 3)$, Light constraints are

$$
x_{1}=0,\left(R x_{2}\right)=1, \quad\left(R x_{3}\right)=1
$$

This is a democracy! hence scaly up, $(0,1 / 3,2 / 3)$ is an equilibrium

